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Abstract

In this paper, we discuss the potential role of answer set programming (ASP) in the context of
approaches to the development of agents and multi-agent systems especially in the realm of Computa-
tional Logic. After shortly recalling the main (computational-logic-based) agent-oriented frameworks,
we introduce ASP; then, we discuss the usefulness of a potential integration of the two paradigms in a
modular heterogeneous framework, and the feasibility of such integration. This also in the more general
view of improving and empowering flexibility of agent-oriented frameworks. Relevant literature will be
mentioned and discussed. Possible future directions and potential developments will be outlined.

1 Introduction

Answer set programming (ASP) (Baral, 2003; Gelfond, 2008; Truszczyńki, 2007; Borchert et al., 2004;
Leone, 2007) is a well-established logic programming paradigm under the answer set semantics, whose
origins go quite a long time back. In fact, ASP is a successful outcome of a long research line in the areas of
knowledge representation (KR), logic programming, and constraint satisfaction. ASP finds applications in
many areas such as, for example, information integration, constraint satisfaction, routing, planning,
diagnosis, security analysis, configuration, computer-aided verification, biology/biomedicine, knowledge
management, etc. The ASP approach to problem-solving consists basically in the following: (i) encoding
of given problem via an ASP program; (ii) computing the ‘answer sets’ of such program via an inference
engine, or ‘ASP solver’; (iii) extracting the problem solution by examining such answer sets; answer set
contents can be in general reformulated in order to presentat the solution in the terms of the given problem.

Many real-world and industrial applications have demonstrated the effectiveness of ASP in practice, as
complex specifications can be implemented and deployed via ASP-based technologies at a lower devel-
opment cost with respect to imperative languages. This in conjunction to other several advantages
observed from the software engineering perspective while developing real-world applications: flexibility,
readability, extensibility, ease of maintenance, etc. Indeed, the possibility of developing the imple-
mentation of complex problemsby simply editing a text file containing ASP rules, and testing it on site
together with the customer by running an ASP solver, is a widely recognized advantage of ASP-based
development. This aspect of ASP-based software development constituted a success factor for applications
where the high complexity of the requirements was a main obstacle. Moreover, ASP inference engines
implement advanced optimization techniques (e.g. Magic Set Optimization Alviano et al. (2012)) leading
to a substantial speed up of the computation that allows to handle industrial applications where a timely
response has to be provided for queries involving huge data sets. In addition, ASP has been endowed with
effective programming tools to support the activities of researchers and implementers, and to simplify the
integration of ASP into existing well-assessed development processes and platforms which are tailored for
object-oriented programming languages, and into distributed and service-oriented frameworks.
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Agent-based systems constitute one of the most important areas of research and development in
information technology in the last few decades. The concept of agency has been exploited in a diverse
range of sub-disciplines of information technology, including computer networks, software engineering,
artificial intelligence, human-computer interaction, distributed and concurrent systems, mobile systems,
telematics, computer-supported cooperative work, control systems, decision support systems (business
intelligence), information retrieval and management and electronic commerce. In fact, designing and
implementing intelligent agents has been the main focus of the field of artificial intelligence since its birth.
Naturally, a prerequisite to constructing systems capable of reasoning and operating autonomously in the
environment is to provide dedicated infrastructure and supporting tools: this includes the development of
agent-oriented programming (AOP) languages and related software engineering methodologies. Several
agent theories, architectures and languages have emerged, concerned with the definition of an agent and its
properties, and with the mathematical formalisms for representing and reasoning about these properties.
Nice surveys on agents can be found; we mention, for example, Bordini et al. (2006) and Fisher et al.
(2007). Agents can then be organized into multi-agent systems (MAS).

Based on the wide success of the ASP approach in the artificial intelligence (AI) field, testified by the
many works on theory and practice of ASP presented in the last years at the main AI Conferences, various
approaches exist in the literature, which strongly support the adoption of ASP for the design of intelligent
agents (please refer to Sections 4.2, 5). In the ‘oldest’ approaches, the use of ASP did mainly take the form of
‘Action Description Languages,’which are formal models used to describe dynamic domains by focusing on
the representation of effects of actions. In particular, an action specification represents the direct effects of
each action on the state of the world, while the language semantics takes care of all the other aspects
concerning the evolution of the world (e.g. the ramification problem). These approaches have been extended
over the years in many ways in order to cope with, interpret, and recover from, exogenous events and
unexpected observations. In subsequent work, ASP-based agent architectures have been proposed, where the
description of both domain’s behavior and agents’ reasoning components is provided in ASP. The adoption
of ASP is due to its ability to represent various forms of knowledge representation and reasoning including
defaults, causal relations, statements referring to incompleteness of knowledge, etc. Later on, extensions of
ASP to enable reactivity and forms of communication between agents have been introduced through, for
example, the introduction of special named sets of fluents known as ‘requests’. A different line of work
focuses on modeling agent and MAS decisions in an extended ASP by means of game theory. Also, there is
relevant work where ASP is exploited to model dynamic updates to an agent’s knowledge base.

In our opinion, the ASP approach to problem-solving (based upon computing at each step the answer
sets of given program), does not appear to be a fully appropriate modeling tool for the dynamic flexible
functioning of agents as concerns reactivity, proactivity and communication. The superposition of such
features ‘on top’ of the ASP approach appears forced. Thus, ASP-based architectures are under these
aspects too rigid in comparison with other approaches to defining agents and MAS in computational logic,
among which we mention at least METATEM, 3APL, AgentSpeak, Goal, Impact, KGP and DALI. All
these architectures, and their operational models, are in practice more dynamic and flexible. Nonetheless,
we believe that ASP can find a relevant role in agent-based applications, as it is suitable to represent
important aspects of an agent’s commonsense reasoning tasks. Such exploitation of ASP features in
agents’ design appears more smooth and feasible in the context of modular agent-oriented architectures. In
our view in fact, an ‘ideal’ agent architecture should be able to exploit the potential of integrating several
modules/components representing different behaviors/forms of reasoning, with these modules possibly
based upon different formalisms. The ‘overall agent’ should emerge from dynamic, non-deterministic
combination of these behaviors that should occur also in consequence of the evolution due to changes in an
agent’s environment.

As a practical example of such an integrated approach, Costantini (2011) advocated an agent archi-
tecture capable of smoothly incorporating several modules/components representing different forms of
reasoning. In their architecture, the authors propose in particular to adopt ASP modules in the context of
agent-oriented Prolog-like languages, and implemented this solution in the DALI language (cf. Costantini
and Tocchio, 2002; Costantini & Tocchio, 2004). In a later paper (Costantini et al., 2015), they show the
effectiveness of this solution by means of a case study where DALI agents cooperate in order to explore un
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unknown territory upon occurrence of some kind of catastrophic event (earthquake, fire, flooding, terrorist
attack, etc.). There, the DALI MAS in charge of managing the overall situation was equipped with ASP
modules which provided flexible and affordable planning capabilities. In fact, there is significant research
work on the exploitation of ASP modules within logical agents frameworks, where such modules are
employed for tasks in which ASP is particularly well-suited: the provided results are filtered and exploited
by agents.

As a matter of fact, approaches that rely on heterogeneous frameworks may have many interesting
advantages: (i) different components (modules) of the system can be implemented using the most suitable
language for the task at hand (task of the module); (ii) these approaches pave the way toward reusable
modules libraries; (iii) they allow in principle parallel implementation of different parts; (iv) they naturally
offer a structured view of the model. Approaches that do not provide support for integration of hetero-
geneous knowledge representation and reasoning technologies in a single agent limit their own applic-
ability only to domains in which their particular technology is appropriate. In general in fact, the particular
mental attitudes that a programming approach implements and the nature of interactions between these
attitudes determines a certain programming style, which could hardly fit every particular domain. Instead,
allowing the possibility to partition an agent’s set of tasks into subsets and to choose for each subset an
appropriate application-specific knowledge representation technology (with an associated reasoning
technique) can more easily result in a flexible, scalable and robust (hybrid) agent system. Therefore, it
should be left to the agent designer to choose the most suitable knowledge representation and reasoning
technology for each task at hand. Thus, the underlying programming framework should be modular
enough to accommodate a wide range of suitable tools. In this paper, we argue in favor of such a
perspective, devoting particular attention to modular agent architectures based on Computational Logic,
and in favor of the role that ASP might profitably play in such frameworks.

This paper is in fact intended as a position paper, aimed to: (i) revise the aspects of interest and
mentioning the relevant literature; (ii) at the same time, propose a discussion to support our proposition.
Specifically, the paper is organized as follows. We provide an overview on agents in Section 2; after
shortly illustrating the concept of agency, we discuss the most prominent existing agent architectures and
agent-oriented languages, and finally we shortly review MAS. Then, we dedicate Section 3 to agent-
oriented software engineering (AOSE), that is crucial in view of complex and industrial applications. We
provide an overview on the ASP approach in Section 4; specifically, after illustrating the basic aspects of
the ASP paradigm, we shortly discuss software engineering issues for ASP, and the use of ASP in
industrial applications. In Section 5, we review the application of ASP in agents and MAS. Section 6 is
devoted to exploring the possibilities of integrating different computational approaches to agency. As, in
our view, the key to doing so is modularity, we discuss modularity in logic programming, agents and ASP.
Section 7 concerns modular distributed architectures, which are becoming increasingly important in view
of Cyber-Physical Systems (CPS; cf. Khaitan & McCalley, 2015, for a survey) and of ‘the Internet of
Everything.’ In Section 8, we propose a discussion about the possibility of integrating ASP and agent-
based formalisms and frameworks on the basis of potential practical applications, outlining possible future
directions and prospective developments. The paper is meant to be readable by the non-expert: so, it
provides a wide perspective concerning all the issues involved. We assume some basic knowledge about
logic and logic programming, and we often mention Datalog and Prolog; the reader may refer to Lloyd
(1987), Apt and Bol (1994) and Przymusinski (1988) for comprehensive surveys.

2 An overview on agents

2.1 What is an agent

The definition of what is an ‘agent’ has been debated for quite some time, and researchers and developers
tend to describe these entities in the context of specific domains of interest. According to Shardlow (1990),
‘Agents do things, they act: that is why they are called agents.’Wooldridge et al. (1995) describe an agent
as ‘one who, or that which, exerts power or produces an effect,’ exercised through actions. For further
discussion, please refer to Franklin and Graesser (1996).
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In the field of artificial intelligence, researchers are more concerned with ‘Intelligent Agents,’ that is,
their objective is to add the concept of ‘intelligence’ in the description of agents’ behavior. The original
perspective in artificial intelligence focused on agents’ reasoning process, thus identifying ‘intelligence’
with rationality. This view was strongly criticized by many researchers and proved in fact to be insuffi-
cient. A novel view of intelligent agents, able to be both rational and reactive, that is, capable of timely
response to external events, was introduced in Kowalski and Sadri (1996). Later, Wooldridge and Jennings
improved the definition of intelligent agent by adding the property of ‘autonomy’, and then of ‘proac-
tivity’, in the sense of being able to take initiatives and to start and perform activities based on one’s own
decision. The reader can refer to Wooldridge et al. (1995) for a definition of agent that explicitly includes
the concept of intelligence. Many other definitions appeared over time, emphasizing different properties
like, for example, communication capabilities (Coen, 1994), mobility (Maes, 1993), typed-message agents
(Petrie, 1996) or trying to classify software agents according to the tasks they perform (e.g. information
gathering agents or email filtering agents) or according to their control architecture. Agents may also be
classified by senses range and sensitivity, or by the actions range and effectiveness, or by how much
internal state they are equipped with, etc. See, for example, a taxonomy of software agents in Brustoloni
(1991), and the approach of Keil (1989). For a discussion about the theory of agency, the reader can refer
to Wooldridge and Jennings (1994).

2.2 Agent architectures

An ‘Agent Architecture’ can be considered as the ‘functional brain structure’ of an agent in making
decisions and reasoning for solving problems. An architecture describes an agent system’s components,
and how these components are organized to produce the overall agent behavior. A large number of
architectures have been developed. Wooldridge et al. (1995) propose a description of an agent architecture
following an abstract approach and introducing the concept of environment with which the agent interacts.
It is also emphasized that agent architectures represent the move from specification to implementation.
Kaelbling (1991) considers an ‘agent architecture as a general methodology for designing particular
modular decompositions for particular tasks.’ Maes (1991) defines an agent architecture as a particular
methodology for building agents. It specifies ‘how the agent can be decomposed into the construction of a
set of component modules and how these modules should be made to interact.’ Sloman and Logan (1998)
observes that a complete functioning agent, whether biological, or simulated in software, or implemented
in the form of a robot, needs an integrated collection of diverse but interrelated capabilities, that is, an
architecture.

Wooldridge et al. (1995) classify agent architectures into four categories:

∙ Logic-based architectures, where each decision is made through logical deduction.
∙ Reactive architectures, in which decision making is implemented via some form of direct mapping from
situation to action.

∙ Belief–desire–intention (BDI) architectures, where an agent takes a decision according to the
manipulation of data structures representing the beliefs, desires and intentions of the agent, that is, the
informative, the motivational and the deliberative components of the system.

∙ Layered architectures, in which decision making is realized via various software layers.

We can add to these categories the cognitive architectures, which are based on the results of cognitive
science, and aims at summarizing the results of cognitive psychology in a comprehensive computer model.
Below we provide some more detail and references for each category.

2.2.1 Logic-based architectures
Also known as the symbolic-based or deliberative architectures, they are one of the earliest kinds of agent
architectures. They are based on the symbolic artificial intelligence approach for representing and mod-
eling the environment and the agent behavior. Examples of this architecture include classical planning
agents such as STRIPS (Fikes & Nilsson, 1971), IPEM (Ambros-Ingerson & Steel, 1988), Autodrive
(Wood, 1993), Softbots (Etzioni et al., 1994), the Phoenix systems (Cohen et al., 1989), IRMA (Bratman
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et al., 1988), HOMER (Vere & Bickmore, 1990) and GRATE (Jennings, 1993). Despite the simplicity and
elegance of logical semantics, this approach is somewhat problematic. First, the transduction problem; in
fact, it is difficult to translate and model the environment’s information into an accurate symbolic repre-
sentation, especially for complex environments. Second, the adopted symbolic form should be suitable for
the agents to reason in a time-constrained environment, which can be non-trivial, in relation to the
computational complexity of theorem proving. Third, the transformation of percepts input may not be
accurate enough to describe the environment due to certain faults such as sensor errors, reasoning errors,
and etc.

2.2.2 Reactive architectures
In the mid-1980s, a new direction of thought emerged, strongly influenced by a refusal of symbolic AI. The
reactive agent architecture is based on the direct mapping of situation to action. Brook’s subsumption
architecture is known as the best pure reactive architecture (Brooks, 1986), aimed to support intelligence via
reactive behavior only. Related approaches are the ‘situated automata’ paradigm by Kaelbling (1991), and
the Agent Network Architecture, where agent acts as a set of reactive ‘competence modules,’ presented in
Maes (1991). An evolution of the subsumption architecture has been proposed by Togelius (2003). This
approach combines incremental and modularized evolution with elements from the subsumption archi-
tecture. Other examples of reactive architectures are systems like JosephWeizenbaum’s Eliza and Agre and
Chapman’s Pengi. Reactive architectures offer many advantages like simplicity, economy, robustness and
computational tractability. The disadvantages include: insufficient information about agent’s current state,
that may determine difficulties in actions activation; it is hard to see how reactive agents can learn from their
experience; while small agent can be easily generated based upon a small number of behaviors, it is hard to
engineer agents with large number of layers (behaviors). Dynamics of interactions become too complex to
understand, and the development of the system may take a lot of time.

2.2.3 Belief–desire–intention architectures
Rao and Georgeff (1991) and Rao and Georgeff (1995) proposed an abstract architecture called BDI,
standing for ‘Belief, Desire, Intention,’ that has become very successful and widely adopted both in
practice, and as a conceptual reference. The BDI architecture is based on practical reasoning by Bratman
Bratman (1999). Practical reasoning is reasoning toward actions—the process of figuring out what to do.
In this architecture, an agent consists of three logic components referring to ‘mental states’ ‘mental
attitudes,’ namely beliefs, desires and intentions. The Beliefs component represents knowledge about the
world. An agent must also have information about the objectives to be accomplished; in BDI, these
objectives are called Desires; desires represent goals that might in principle be selected for actual
accomplishment. Finally, Intentions represent the current agent’ course of action, that is, the objectives
that are presently being pursued. Since the first formalization, the BDI model has evolved, thus generating
several related approaches, as summarized in Georgeff et al. (1998). The design of the BDI architecture is
clear and intuitive. However, the question is how to effectively implement its basic concepts and how to
achieve a balance between commitment (to intentions and to specific plans) and reconsideration, espe-
cially in resource-bounded agents acting in a changing environment. Specification, design and verification
of BDI agents have received a great dea: Dagli Oggetti agli Agenti. 6th AI*IA/TABOO Joint Workshop
‘From Objects to Agents’: Simulation and Formal Analysis of Complex Systemsl of attention. Although
beliefs, desires and intentions represent a nice method to model intelligent agents in a dynamic environ-
ment, the BDI architecture is semantically too complex to be fully and efficiently implemented (Rao,
1996). Thus, the BDI model has been integrated with other approaches from computational logic. This
integration resulted in the languages AgentSpeak(L) (Rao, 1996), 3APL (d’Inverno et al., 2000) and
others (cf. Mascardi et al., 2005, for a review).

2.2.4 Layered (hybrid) architectures
Layered architectures respond to the need of having agents that exhibit different kinds of behavior. These
architectures combine the advantages of both reactive and logic-based architecture. An agent can be
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thought of as a system consisting of separate subsystems, decomposed into a layered structure, where each
of them implements a particular behavior. Usually, in this architecture subsystems are arranged into two
layers, reactive and proactive, but it is possible to have as many layers as the desired behaviors. Wool-
dridge (1999) notes that this kind of architectures may have two types of control flow: horizontal, and
vertical. The problem with horizontal architectures is the complexity of interactions between layers. With
vertical layered architectures this problem is solved because the control flows pass sequentially through
each layer. The limit of the vertical architecture is however the lack of flexibility: in order to make a
decision, control must pass through all layers and failure of one of them implies the failure of the overall
decision process. An example of horizontal layered architecture is the TOURINGMACHINES of
Ferguson (1992). InteRRaP is an example of vertically two-pass agent architecture (cf. Müller & Pischel,
1994). Another relevant architecture adopting the layered approach is JADE (cf. JADEWebsite, 2016). A
JADE evolution towards the BDI model is JADEX (Pokahr et al., 2005). JADEX is an implementation of
a reactive and deliberative architecture, integrating into JADE ‘mentalistic’ concepts typical of
BDI model.

2.2.5 Cognitive architectures
These kind of architectures are aimed to construct intelligent systems/agents that models human perfor-
mance, like in Newell (1990), Meyer and Kieras (1997). A cognitive architecture is a theory about the
fixed computational structure of cognition (see, e.g. Anderson and Lebiere, 1998; Newell, 1990; Pylyshyn,
1990). The origin of cognitive architectures lies in ‘production systems’ (Newell, 1973; Neches et al.,
1987), which can be used to form a ‘recognition memory’ or ‘production memory’ (for explanation please
refer to the book ‘Unified Theories of Cognition’ by Newell (1990: 165, 486). Memory and learning are
the two important key components in developing cognitive architecture. By combining these two com-
ponents we can distinguish three main categories of cognitive agent architectures: symbolic, emergent, and
hybrid models, as illustrated in Duch et al. (2008). Examples of cognitive symbolic architectures are
SOAR (cf. Laird et al., 1987; Newell, 1990), EPIC (cf. Meyer & Kieras, 1997), ICARUS (cf. Langley,
2005). A comprehensive review of implemented cognitive architectures has been undertaken in Samso-
novich (2010). For another review, the reader can also refer to Langley et al. (2009).

2.3 Agent-oriented programming languages

We now move to talk briefly about AOP, that is, the programming paradigm that allow developers to
program agents which are closely related to a certain agent architecture. An AOP language should provide
support to a wide range of key agent characteristics like autonomy, communication, distribution, con-
currency, naming, mobility, decision making, representation of mental attributes and knowledge, etc.
Since the seminal paper of more than two decades ago by Shoham (1993) on AOP, many specialized
programming languages for the development of agents with mental states have been proposed. For sur-
veys, the reader can refer to Bordini et al. (2006), Fisher et al. (2007), Mascardi et al. (2005). The first
attempt to design an AOP was AGENT-0 (Shoham, 1993). AGENT-0 was refined in Thomas (1993),
resulting in the ‘Planning Communicating Agents’ (PLACA) language. Concurrent METATEM language
was developed by Fisher (1994) to address the drawbacks of both AGENT-0 and PLACA.

Many other agent oriented languages have been developed so far, with these languages following two
main lines. On the one hand are the pragmatic approaches, where the most prominent examples are JACK
(JADE Website, 2016) and Jadex (Pokahr et al., 2005), both based on Java as the underlying language.
These approaches enjoy the practically proven object-oriented syntax, vast range of libraries and easy
integration with legacy and third-party systems, which make them very popular among practitioners.
However, a drawback of these approaches is the difficult integration of specialized knowledge-
representation techniques.

On the other hand are the theoretically driven approaches, mainly based upon Computational Logic and
Prolog, which aim at designing a stand-alone agent programming language using mental attitudes and
knowledge representation as primary concepts. We consider this line as particularly interesting because
Computational Logic brings the advantages of clarity, where the code can be understandable even by the
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non-expert, and of verifiability of agents, MAS and protocols via formal techniques. In fact, agent models
have been implemented for a long time by means of imperative programming languages, mainly for the
sake of computational efficiency. While, however, efficiency may not always be an issue, while instead
clear specification and correctness are. In addition, declarative approaches are suitable to handle the
complexity of agent systems, where the efficiency and effectiveness of implementations is constantly
improving. So, the logical approaches to building agents have now become effective in the direction of
practical usability in real-world applications. Well-established languages based upon Computational
Logic are 3APL (d’Inverno et al., 2000), AgentSpeak(L) (Rao, 1996; d’Inverno & Luck, 1998), GOAL,
IMPACT (cf. Dix et al., 2000; Rogers et al., 2000), DALI (cf. Costantini & Tocchio, 2002; Costantini &
Tocchio, 2004; Costantini & Tocchio, 2005). More generally, there are approaches fully based upon
declarative paradigms, and others depending partially on computational logic (hybrid approaches which
combine both declarative and imperative features) for both single-agents and MAS. For a detailed dis-
cussion of different computational programming approaches, the reader may refer to the surveys (Dastani,
2015; Bordini et al., 2006; Fisher et al., 2007).

2.4 Multi-agent systems

Agents are social entities:696 they exist in an environment with other agents, with which they will
generally be expected to interact in some way. Agents can thus be organized into MAS composed of either
homogeneous or heterogeneous agents (the latter being defined via different agent-oriented languages and
architectures). According to the seminal work of Jennings et al. (1998), the features of MASs are the
following: (i) each agent has incomplete information, or capabilities for solving the problem; (ii) there is
no global system control; (iii) data are decentralized; (iv) computation is asynchronous.

Interaction is crucial in MAS, as it allows agents to share information which is necessary to achieve
their goals. Often, communities of agents interact in order to resolve a common problem; sometimes,
however, agents have egoistic interests to pursue independently or even in competition with others. These
two modalities of interaction, cooperation and competition, has been treated for a long time in Distributed
Artificial Intelligence.

MAS began to invade the scientific and industrial world since the 1980s. In fact, their ability to adapt
themselves flexibly and intelligently to different contexts determined the development of interesting
applications. From the mid-1980s, many control architectures for MAS have been developed, that we do
not discuss here as MASs are not a central topic of this paper. For surveys, the reader may refer to Jennings
et al. (1998), Baldoni et al. (2010), Torroni (2004). The wide applicability of agents andMAS has fostered
the upcoming (since the seminal work of Wooldridge (1997)) of AOSE, which is a software engineering
paradigm aimed at applying best practice in the development of such systems. AOSE is focused on the use
of agents and organizations (communities) of agents as the main abstractions.

3 Agent-oriented software engineering

Software engineering is crucial for real-world (industrial) applications, as software systems are required to
operate in an increasingly complex, distributed, large, open, unpredictable, heterogeneous and highly
interactive applications environments. Agent-based computing is considered to be very promising and
natural for building these systems in terms of MAS. AOSE has emerged from the interaction among agent-
oriented computing and software engineering and can serve as a useful paradigm for the development of
agent-based systems. There exist several methodologies for AOSE; many of them argue the adequacy of
OOSE (Object-Orientes Software Engineering) to model AOSE and give emphasis to ‘agentifying’ soft-
ware entities, namely turning software components (agents and non agents) into agent entities. Among
these methodologies are Gaia (Wooldridge et al., 2000) and SODA (Omicini, 2001). Other approaches are
based on object-oriented methodologies which provide an engineering process based, vice versa, on
‘objectifying’ the software system components, so as to model all components at the same level of
abstraction. Examples of such approaches are MaSE (Wood & DeLoach, 2001) and KGR (Kinny et al.,
1996). Other approaches give emphasis to the extension to AOSE of modeling techniques developed for
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OOSE, specifically Unified Modeling Language, which becomes Agent-Oriented Unified Modeling
Language (cf. Bauer et al., 2001).

Since AOSE combines software engineering and agency theory, it is necessary to establish evaluation
criteria to help assess the suitability of a technique or a language for industrial software development. Such
criteria are required to be coherent with software engineering objectives, while keeping agents’ char-
acteristics into account. General evaluation criteria concentrate on features that should be naturally sup-
ported by any given methodology Juneidi and Vouros (2004) and usually include the following.

∙ Preciseness: the semantics of a modeling technique must be unambiguous.
∙ Accessibility: modeling techniques should be understandable to both experts and novices.
∙ Expressiveness: a modeling technique should be able to present the structure of the system, the
encapsulated knowledge, the data flow, the control flow within the system and also the interactions with
other systems.

∙ Modularity and objectiveness: the ability to articulate a modeling technique into stages.
∙ Complexity management: a modeling technique should be expressed and then examined at various
levels of detail.

∙ Executability and testability: prototyping capacity or simulation capacity.
∙ Refinability: ability to provide guidelines for refining a model.
∙ Analizability: availability of tools to check internal consistency.
∙ Openness and portability: implementation issues should be left to the programmers without obliging
them to adopt a specific architecture or language.

∙ Formalization: modeling constructs should be complete and comprehensive, so as to instruct or even
generate implementation.

Agency characteristics must however be checked in a given AOSE methodology, by means of at least
the following criteria.

∙ Autonomy: the modeling technique should support the capability of describing an agent’s self control
feature.

∙ Complexity: agent-oriented systems are complex systems consisting of sets of components (agents) that
interact with each other to achieve their goals. These systems may exploit many complex mechanisms
and algorithms (learning, reasoning, decision making, etc.). Modeling them requires strong expressive
power, so a modeling technique should support such expressiveness. Moreover, the complexity feature
requires that a modeling technique should be modular, and able to support complexity management.

∙ Adaptability: agent-oriented systems should be flexible enough to adjust their activities to the dynamic
environmental changes; so, the adaptability feature requires the modeling technique to be modular and
able to specify activation of each component according to the environmental state.

∙ Concurrency: an agent may need to perform several tasks concurrently; for this reason, some agent-
oriented systems must be designed as parallel processing systems. So, this requires the ability to express
parallelism and concurrency in design and implementation stages.

∙ Distribution: MAS are sometimes distributed over the network. This requires the ability to express
distribution in design and implementation stages.

∙ Communications richness: amodeling technique shouldbe able to express a characterizationof communication
in order to produce agent communication commands or sentences during the implementation stage.

For logical agents, relevant existing work includes JaCaMo (http://jacamo.sourceforge.net), which is a
methodology for the design and implementation of agents and MAS based upon the AgentSpeak Rao and
Georgeff (1991) language (a very popular language based on theBDI agent model) under the Jason interpreter
Bordini and Hübner (2006), Bordini et al. (2007), integrated with CArtAgO, which is a platform for pro-
gramming distributed artifact-based environments Ricci et al. (2007), according to the ‘Agents and Artifacts’
metamodel.MAS in JaCaMo should be built in accord to theMoise organizational modelHübner et al. (2007)
where a MAS is considered to be an organization structured as agents groups and sub-groups, in term of their
roles and objectives. A survey about AOSE and its prospective employment in industry can be found in
Akbari (2010). The reader may also refer to the EMAS series of workshops, http://emas.in.tu-clausthal.de/.
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4 Answer set programming: an overview

4.1 The answer set programming approach

ASP is a logic programming paradigm under answer set (or ‘stable model’) semantics Gelfond and
Lifschitz (1988), which applies ideas of autoepistemic logic Moore (1985) and default logic Reiter (1980).
ASP features a highly declarative and expressive programming language, oriented towards difficult search
problems. It has been used in a wide variety of applications in different areas like problem solving,
configuration, information integration, security analysis, agent systems, semantic Web and planning (for
more information about ASP and its application the reader can refer, among many, Baral, 2003; Borchert
et al., 2004; Leone, 2007; Truszczyńki, 2007; Gelfond, 2008 and the references therein) and, more
generally, to represent combinatorial problems in knowledge representation and automated reasoning.

ASP has emerged from interaction between two lines of research: first on the semantics of negation in
logic programming, and second on applications of satisfiability solvers to search problems Kautz and
Selman (1992). It was (independently) identified as a new programming paradigm in Lifschitz (1999),
Marek and Truszczyński (1999), Niemelä (1999). In ASP, search problems are reduced to computing
answer sets (or ‘stable models’ as they were originally denominated), and an answer set solver (i.e. a
program for generating stable models) is used to find solutions (if any exists). The search algorithms
adopted in the design of answer set systems are mostly enhancements of the Davis-Putnam Logemann-
Loveland procedure. Unlike SLDNF resolution employed in Prolog, such algorithms, in principle, always
terminate.

The expressiveness of ASP, the readability of its code and the performance of the available ‘solvers’
gained ASP an important role in the field of artificial intelligence; ASP applications have in fact been
developed in several fields, as seen below. In the answer set semantics Gelfond and Lifschitz (1988, 1991),
a (logic) program Π is a collection of rules of the form: H← L1, … , Ln

The left-hand side and right-hand side of rules are called head and body, respectively, where H is
an atom, n≥ 0 and each literal Li either an atom Ai or its default negation notAi. A rule can be rephrased
asH← A1, … ,Am, notAm+1, … , notAnwhereA1, … ,Am can be called positive body and notAm+1, … ,
notAn can be called negative body. In practical programming, ‘← ’ is usually indicated as ‘:− ’. A rule with
empty body (n=0) is called a unit rule, or fact. A rule with empty head, of the form ←L1, … , Ln, is a
constraint, and states that literals L1, … , Ln cannot be simultaneously true in any answer set.

The answer sets semantics Gelfond and Lifschitz (1988, 1991) can be considered a view of a logic
program as a set of inference rules (more precisely, default inference rules), or, equivalently, a set of
constraints on the solution of a problem: each answer set represents a solution compatible with the
constraints expressed by the program. Consider simple program: {q← not p p← not q}. The first rule is
read as ‘assuming that p is false, we can conclude that q is true.’ The second rule is analogous though
complementary, as truth of p depends upon assuming falsity of q. This program has two answer sets. In the
first one, q is true while p is false; in the second one, p is true while q is false. So, negation in this paradigm
is understood as default negation, that is, nota indicates the (default) assumption that a is false and thus its
negation holds. Unlike other semantics, a program may have several answer sets or may have no answer
set, where however every answer set is a minimal model of given program1, and thus the answer sets form
an anti-chain. Whenever a program has no answer sets (as some minimal models may not be answer sets),
the program is said to be inconsistent . For instance, the following program has no answer set: {a← notb
b← notc c← nota.}. The reason is that in every minimal model of this program there is a true atom that
depends (in the program) on the negation of another true atom, which is strictly forbidden in this
semantics, where every answer set can be considered as a self-consistent and self-supporting set of
consequences of a given program. The program {p← not p} has no answer sets either as it is contradictory
not in the sense of classical logic, but in the sense that p cannot be derived from notp, that is, from the
(default) assumption that p itself is false. Constraints of the form defined above can be in fact simulated by
plain rules of the form p← notp,L1, … , Ln. where p is a fresh atom. Consistency of an ASP program is

1 By ‘minimal model of program Π’ we mean a minimal model of Π intended as a classical first-order logic theory,
where ← is intended as implication, the comma as conjunction, and not as negation in classical logic terms.
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related (as discussed at length in Costantini, 1995, 2006; Costantini et al., 2002) to the occurrence of ‘odd
cycles’ (of which p← notp is the basic case, though odd cycles may involve any odd number of atoms) and
to their connections to other parts of the program. The reason is that, in principle, the negation notA of atom
A is an assumption, that must be dropped whenever A can be proved, as answer sets are by definition non-
contradictory. Many extensions of the original ‘Answer Set Prolog’ have been proposed, mainly motivated
by applications. Some of them are syntactic sugar and some other strictly adds expressiveness to the
language. For details about these extensions, the reader can reefr to Gelfond (2008), Gelfond and Kahl
(2014,) and to references therein.

In the ASP paradigm, as mentioned each answer set is seen as a solution of given problem, encoded as
an ASP program (or, better, the solution is extracted from an answer set by ignoring irrelevant details and
possibly re-organizing the presentation). So, differently from traditional logic programming, the solutions
of a problem are not obtained through substitutions of variables values in answer to a query. Rather, a
program Π describes a problem, of which its answer sets represent the possible solutions. To find these
solutions, an ASP-solver is used. Several solvers have become available, see Answer Set Programming
Solvers (2016), each of them being characterized by its own prominent valuable features. Recently ‘meta-
solvers’ such as multi-engine ASP system Maratea et al. (2015) have been developed, which select the
most appropriate solver according to specific syntactic features of given program. The expressive power of
ASP and its computational complexity have been deeply investigated (cf., e.g., Dantsin et al., 2001).

4.2 Industrial answer set programming applications

In this section we intend to shed light on some of the many challenges addressed by ASP in industrial
applications. ASP-based software development provides many advantages, such as flexibility, readability,
extensibility and ease of maintenance due to its powerful and expressive framework. One of the success
factors of ASP-based software development in many industrial applications has been the flexibility in
developing complex reasoning tasks by simply editing a text file containing the ASP rules, and testing it
on-site together with the customer. This has been evident, for example, for the workforce-management
application concerning the employees of the Gioia Tauro seaport (Ricca et al., 2012),where the main
obstacle was the high complexity of the requirements; the use of ASP as an executable specification
language made the process of clarifying and formalizing the requirements much easier. This in addition to
the advantages of lower (implementation) costs by realizing complex features of an application in such a
way, compared to traditional imperative languages.

Another challenge in industrial applications addressed by ASP is computational efficiency, which is
handled by optimization techniques implemented by ASP solvers. For instance, in the Intelligent call-
routing application (the company ’Exeura’ developed a platform for customer profiling for phone-call
routing based on ASP that is called Zlog (n.d.), an immediate response has to be given to queries over huge
data sets. The DLV solver adopts the Magic Set optimization (Alviano et al., 2012) technique can localize
the computation to the small part of the database that is relevant for the specific query at hand; this leads to
a huge speedup of the computation. Telecom Italia employs the zLog platform in a production system that
handles its call centers.

In many other applications of ASP, concerning knowledge representation and reasoning, robotics, and
bioinformatics and computational biology as well as some other related applications, ASP addresses
different types of challenges. For instance, some of the important challenges in knowledge representation
and reasoning concern the representation of defaults to handle exceptions and the commonsense law of
inertia, so as to be able to reason about the effects of actions. In robotic applications ASP addresses other
type of challenges like hybrid reasoning, reasoning about commonsense knowledge and exceptions,
optimizations over plans or diagnoses; Erdem et al. (2012) uses ASP to plan the actions of multiple robots
that collaborate to organize a house within a specific time and Erdem et al. (2013) uses ASP to find an
optimal global plan for a number of teams of heterogeneous robots in a cognitive factory to manufacture a
number of orders within a specific time. In Erdem et al. (2015), ASP is exploited for diagnosing plan
failures during monitoring of plan execution. ASP is also used for geometric rearrangement of multiple
movable objects on a cluttered surface in Havur et al. (2014), where locations of objects can be changed by
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pick and/or push actions. Zhang et al. (2015) use ASP to describe objects and relations between them,
where this knowledge is used to improve localization of target objects. Provability of computational
problems formulation, expressing sophisticated concepts that require recursion and/or aggregates, and
integration of heterogeneous knowledge are some of many challenges addressed by ASP in bioinfor-
matics. For example, Nam and Baral (2009) introduce a method to model a biological signaling network as
an action description in ASP which allows for prediction, planning and explanation generation about the
network. Gebser et al. (2011) introduce a method to model biochemical reactions and genetic regulations
as influence graphs in ASP, to detect and explain inconsistencies between experimental profiles and
influence graphs. In Brooks et al. (2007), ASP was used to solve the problem of reconstructing phylo-
genies for specified taxa, with a character-based cladistics approach. Erdem et al. (2011) and Erdem and
Öztok (2015) use ASP to answer complex queries over biomedical ontologies and databases, and to
generate the shortest explanations to justify these answers. Many similar challenges are also addressed by
ASP in other industrial applications, such as data cleaning, extraction of relevant knowledge from large
databases and software-engineering challenges.

ASP has been profitably applied in applications concerning tourism industry. For instance, Ricca et al.
(2010) has developed an intelligent advisor to select the most promising offers for travel agency’s cus-
tomers. ASP has been used as the intelligent engine of a semantic-based information extractor (cf. Manna
et al., 2011), which analyzes touristic offers, extracts the relevant information (e.g. place, date, prize), and
classifies them in an ontology. In addition, ASP has been used for developing several search modules
which simplify selecting the holiday packages that best fit the customer needs. This helps the employees of
a travel agency to find the best possible travel solutions in a short time.

ASP has been successfully employed in context of e-Medicine, in particular for data-cleaning of
medical knowledge bases. These knowledge bases are in fact the result of the integration of different
databases: thus, they often present errors and anomalies that severely limit their usefulness. Leone and
Ricca (2015) developed a data-cleaning system, based on ASP and called DLVCleaner; this system detects
and automatically corrects both syntactic and semantic anomalies in medical knowledge bases on the basis
on ontological domain descriptions and measures for string similarities (cf. Greco & Terracina, 2013).
In this application, ASP allows for a simplified and flexible specification of the logic of the data-
cleaning task.

One of the first industrial applications of ASP was for product configuration (Tiihonen et al., 2003),
used by Variantum Oy. More recently, the group of Gerhard Friedrich at Alpen-Adria Universität Kla-
genfurt, Austria has developed a configuration and reconfiguration application, deployed by Siemens. In
particular, ASP has been used for configuration of railway safety systems. This configuration problem is
NP-hard and has proved challenging for problem-solving frameworks such as SAT, constraint program-
ming, MIP and ASP (cf. Aschinger et al., 2011). Thus, ASP made it possible to solve configuration
problems that could not be solved by specialized configuration tools. ASP is applied to model possible
changes of existing systems and to compute reconfiguration solutions that optimize the adaptation actions.
For example, in Friedrich et al. (2011) the aim is to maximize the number of reused modules and minimize
the costs of additional equipment. In addition to configuration tasks, ASP was applied in Friedrich et al.
(2010) to diagnose and repair systems. For more details on ASP applications, the reader can refer Erdem
et al. (2016), Grasso et al. (2013) and to the references therein.

4.3 Software engineering for answer set programming

ASP has become one of the most increasingly used tools for knowledge representation and reasoning; in
fact, ASP has proved to be very effective in developing complex knowledge intensive applications at a
lower price (for implementation) than the imperative languages. In addition, it has been observed by
developers that the use of ASP brings many benefits from the point view of software engineering practices
like expressiveness, flexibility, extensibility, readability, ease of maintenance, etc.

However, developing complex systems in any programming language is not an easy task, and ASP is
not an exception. In fact, developers have faced many practical obstacles, due to the shortage of devel-
opment tools and software engineering methodologies tailored particularly for ASP. This issue was
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recognized by the research community, thus the SEA (Software Engineering and ASP) series of work-
shops was initiated, which provide an international forum to discuss software engineering problems that
the field may experience either currently or in perspective. The aim of this forum is to start a general
discussion on the requirements and specification of input, output and intermediate languages for answer
set solvers. In addition, there has been the development of many interfaces, frameworks and development
tools like APIs, ASPIDE, Jazzyk, and JDLV to ease the use of ASP in real world applications.

The first step in addressing the above-mentioned need was the development of APIs (cf. Gallucci &
Ricca, 2007; Ricca, 2003) which offer a method for interacting with ASP solvers from an embedding Java
program. This is relevant since ASP is not a general purpose language; thus, ASP programs often need to
be embedded within components built by using some imperative language, for interfacing with the
environment or for user interaction. ASPIDE (cf. Febbraro et al., 2011) is an IDE that supports the entire
life-cycle of the development of ASP-based applications. ASPIDE is written in Java and includes a DLV
wrapper (cf. Ricca, 2003) for interacting with DLV, which is one of the most famous and well-developed
ASP solvers (http://www.dlvsystem.com/). SeaLion (sealion.at) is an Integrated Development Environ-
ment for Answer-Set Programming which comes as an Eclipse plugin and aims at offering support to
write, evaluate, debug and test answer-set programs.

JDLV (available at http://www.dlvsystem.com/dlvsystem/index.php/JDLV), is an advanced platform
for integrating Java with DLV, which comes as a plug-in for the Eclipse platform, offering a seamless
integration of ASP-based technologies within the most popular development environment for Java. JDLV
is based on JASP (cf. Febbraro et al., 2012), a hybrid language that transparently supports a bilateral
interaction between ASP and Java. JASP embeds ASP code in a Java program, where a logical ASP
module can access Java variables; the answer sets resulting from the execution of ASP code are auto-
matically stored in Java objects, where the collections of Java objects are mapped to ASP facts. In addition,
JASP allows a programmer to include arbitrary Java expressions in logic rules, to be evaluated at runtime.

5 Answer set programming and agents

A large number of papers have proposed the application of ASP in the modeling of intelligent agents. In
fact this is not surprising, since ASP was developed specially for non-monotonic reasoning, including
forms of common-sense reasoning required in agent modeling (cf. Gelfond & Kahl, 2014). In this section
we provide a review of such proposals.

5.1 Agents in answer set programming

ASP have been used in agents since quite a long time, though this use was initially mainly in the form of
action description languages. They were first introduced in Gelfond and Lifschitz (1998) and in Baral and
Gelfond (2000), where a simple ASP-based agent architecture was proposed. This work was then extended
and refined by many authors: Balduccini and Gelfond (2003), Balduccini et al. (2006), Balduccini
(2007a). This architecture is further refined and described in Balduccini and Gelfond (2008), where it is
named ‘AAA’ (Autonomous Agents Architecture) and is intended for intelligent agents acting and rea-
soning in a changing environment. The agent behavior is based on the simple control loop of the kind that
Kowalski, in Kowalski and Sadri (1996), called ‘observe-think-act’ cycle. The description of domain’s
behavior and of the reasoning components are written in Answer Set Prolog. The architecture gives the
agent capabilities of planning, detecting, interpreting and recovering from, unexpected observations. In
addition, the design and the knowledge bases are elaboration-tolerant. Another special feature of the
architecture is that the same domain description is shared by all the reasoning modules. A prototype of the
implementation of the architecture can be found at: http://mbal.tk/APLAgentMgr/

Building upon this work, a new architecture, AIA, was proposed in Blount et al. (2015). The AIA
framework is an architecture for intelligent agents whose behavior is driven by their intentions and that
reason about, and act in a changing environment. The domain description includes both the agents’
environment and a general Theory of Intentions. The main difference between AAA and AIA architectures
is in the organization of the control loop that is in AIA centered around the notion of intention, which is
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something absent in AAA. The AIA architecture is meant to enable agents explain unexpected observa-
tions and decide the intended action at the present moment. Reasoning tasks are reduced to computing
answer sets of CR-Prolog programs constructed automatically from an agent’s knowledge. A prototype
can be found at http://www.depts.ttu.edu/cs/research/krlab/software-aia.php. An evolution of the AAA
architecture was proposed for UAVs (unmanned aerial vehicles) operation in Balduccini et al. (2014).
There, both agent architecture and reasoning algorithms based on ASP were developed. ASP has been
chosen for this task because it enables high flexibility of representation, both of knowledge and of rea-
soning tasks. This work is part of a project aimed at investigating how traditional AI reasoning techniques
can be extended to coordinate teams of UAVs in dynamic environments. This work demonstrates the
reliability and performance gains deriving from network-aware reasoning. Overall, this work was the first
practical application of a complete ASP-based agent architecture. It is also the first practical application of
ASP involving a combination of centralized reasoning, decentralized reasoning, execution monitoring and
reasoning about network communications.

Jazzyk (cf. Novák, 2009) is a hybrid, special-purpose programming language for development of
knowledge intensive (intelligent) agent systems. Jazzyk agents consist of: a number of knowledge bases,
each realized by a separate specialized knowledge representation module (called ’plug-in’), and an agent
program in a form of a set of possibly nested rules of the basic form: ’when Query then Update’. Jazzyk
integrates an ASP solver for handling ASP modules.

5.2 Answer set programming and multi-agent systems

In the realm of MAS, ASP has been used for defining and for modeling aspects of MASs, for reasoning
about these systems, and for configuration of (features of) MAS. De Vos and Vermeir (2004) presents
systems composed of logic programming agents systems (LPAS) to model the interactions between
decision-makers in the process of reaching a conclusion. The system consists of a group of agents con-
nected by means of unidirectional communication channels. These agents communicate with each other by
passing answer sets obtained by updating the information received from connected agents with their own
private information. The authors introduce a simple answer set semantics for LPAS. This kind of systems
is useful for modeling decision problems. As an application, the authors show how extensive games with
perfect information can be conveniently represented as LPAS, where each agent embodies the reasoning of
a game player, such that the equilibria of the game correspond with the semantics agreements among the
agents in the LPAS.

Amongst the most demanding properties with respect to the design and implementation of MAS
systems is how the agents may individually reason about and communicate their knowledge and beliefs,
within a perspective of cooperation and collaboration. Here it is vital for the agents to be able to verify the
reliability of information providers especially when the pieces of information coming from different
sources contradict each other. In De Vos et al. (2005), the authors present a hybrid multi-agent platform,
called T-LAIMA, using an extension of ASP. They show that their framework is capable of dealing with
the specification and implementation of the system’s architecture, and with the communication and the
individual reasoning capabilities of the agents. Agents use ASP to represent their reasoning capabilities.
Agents interact with each other, and via such interactions the agents may update trust values, make or
break connections with other agents, etc. As steps in the agent loop, the agent may also choose goals to try
and satisfy, plan to achieve such goals, and can also make observations, perform diagnosis, execute
actions, etc.

Buccafurri and Gottlob (2002) introduced a new notion of ‘compromises’ for MAS desiring to reach a
common decision using joint fixpoints and stable models. In a multi-agent setting, a joint decision of the
agents, reflecting a compromise of the various requirements, corresponds in this approach to a suitable
joint model of the respective ogic programs. The authors proposed an appropriate semantics, namely
the joint fixpoint semantics, where intended joint models are defined to be the (minimal) joint fixpoints of
the agent programs. This work was then extended in Buccafurri and Caminiti (2005) to model social
behavior among a community of agents represented by logic programs. This by focusing on a language
derived from logic programming which supports the representation of mental states of agent communities
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and provides each agent with the capability of reasoning about other agents’ mental states and acting
accordingly. The proposed semantics is shown to be translatable into stable model semantics of logic
programs with aggregates.

‘Communicating answer set programming’ (CASP) is an intuitive extension of ASP, in which multiple
ASP programs collaborate to solve some problem. The expressiveness of CASP has not been thoroughly
studied yet. Bauters et al. (2013) presents a systematic study of the additional expressiveness offered by
allowing ASP programs to communicate. This paper aggregates and extends the work from Bauters
(2011b) and Bauters et al. (2010).

Van Nieuwenborgh et al. (2006) proposed a multi-agent framework that is capable of modeling hier-
archical decision problems. This framework is a multi-agent formalism based on extended ASP. The
system consists of independent agents connected via a communication channel, where knowledge and
beliefs of each agent are represented by a logic program. The resulting semantics is very expressive, and it
essentially captures the polynomial hierarchy, thus enabling complex applications.

In Cliffe et al. (2006), the authors describe the use of ASP as an institutional modeling technique.
Basically, they demonstrate how formal specifications of institutions for the purpose of obligations,
permissions and violations, can be translated into ASP programs in such a way that ordered traces which
record their actions can be obtained as answer sets. These answer sets have a one-to-one relationship with
the institutional event traces of the formal model. This provides an easy way to inspect properties of
models. The ability to reason about and query time-related information is a strong point for using ASP. In
contrast to symbolic model checking, ASP allows the statement of problems and queries in domain-
specific terms as executable logic programs therefore eliminating the gap between specification and
verification language.

Resource allocation in MAS is a growing area of research. It involves many aspects: economical, game-
theoretical and purely computational ones. The work of Leite et al. (2009) is concerned with computa-
tional aspects of resource allocation, particularly concerning complex combinatorial problems. In spite of
the extensive theoretical work and the raising number of practical applications, many fundamental pro-
blems in multi-agent resource allocation still lack proper solutions. Here, the authors show how ASP can
be used for providing general and flexible solutions of these problems in a compact and declarative
manner.

Baral et al. (2010) discussed and explored the use of ASP for defining action techniques that address
one of the most challenging aspects of reasoning, namely planning and acting in a multi-agent domain:
which is, reasoning about what the agents know about the knowledge of their fellows, and take such
knowledge into account when planning and acting. This approach presents a number of advantages; from
the theoretical perspective, the property of nonmonotonicity of ASP (and many other features) allows one
to express causality in an elegant way; from the practical point of view, recent implementations of ASP
solvers have become very efficient. Finally, the use of ASP for reasoning about action techniques allows
for the adaptation of a large body of research developed for single-agent to multiagent domains.

Bauters (2011a) presents a case study exploring how one can use ‘multi-focused answer sets’ to model
the process of coalition formation; via multi focused answer sets, one can impose constraints so as to reach
a unique agreement, represented by an answer set, that optimizes the preferences of the parties involved.
This work uses CASP to encode preferences and soft constraints. CASP allows in fact a number of ASP
programs to collaborate by asking each other questions. In CASP, there is no longer a unique way to define
a stable model. By using a mechanism called ‘focusing’ it becomes possible to eliminate some of these
stable models, that is, to assign preferences to the stable models of a CASP program.

In Ianni et al. (2003), the authors propose an innovative architecture where they integrate a framework
based on ASP into an Information Retrival Agent named GSA (Global Search Agent, illustrated in
Castellucci et al., 2001; Ianni, 2001). In order to improve the original system effectiveness, the ’GSA2’
system introduces a new internal architecture based on a message-passing framework and on an ontology
description formalism (WOLF (Web Ontology Framework)). The system consists of a set of cooperating
agents where each one is a specialized module. The role of central intelligence is played by a reasoning
system based on ASP, and makes the agents able to take independent decisions. The high expressive
power of ASP allows to describe program and plan behaviors of the agents easily and quickly, and to
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experiment with any (even future) information retrieval strategy. Both the system architecture and WOLF
are very general and reusable, and constitute a very good and interesting example of actual exploitation of
ASP for real applications.

In Osorio et al. (2005), the authors propose the use of ASP and of the argumentation framework
proposed by Dung (1995) to represent a medical transplantation knowledge base. They define CARREL-
ASP, namely CARREL Cortés et al. (2005) extended with ASP, to perform decision making based on
argumentation framework.

In Amendola et al. (2016), the authors propose a compact representation for the non-transferable utility
games based on ASP. The representation is fully expressive, in that it can capture all games defined over a
finite set of alternatives. The approach can easily accommodate the definition of games within wide range
of application domains, ranging from scheduling to routing and planning, etc.

In Son et al. (2016), the authors present a framework based on ASP to reason about the truthfulness of
statements made by an agent. The framework does not assume complete knowledge about the agent being
observed and the reasoning process builds on observations about the state of the world and the occurrences
of actions. The authors explore the use of their framework in the detection of Man-In-The-Middle attacks
targeting computers and CPS.

In Nogueira et al. (2001), authors describe a medium-sized decision support system for shuttle flight
controllers written in ASP. The system consists of a collection of largely independent modules represented
by lp-functions and a graphical Java interface.

A general overview of approaches investigating and specifying methodologies for modeling agents by
means ASP can be found in Gelfond (2004). Overall however, with due recognition to the wide corpus of
existing work it is possible to observe that the features of the ASP approach (4) are not fully appropriate to
modeling the dynamic flexible functioning of agents as concerns reactivity, proactivity and communica-
tion. The superposition of such features ‘on top’ of the ASP approach appears forced, awkward and not
fully satisfactory. Instead, ASP can clearly model important aspects of agents, concerning their com-
monsense reasoning and planning tasks. So, in our opinion ASP can find its relevant place in agent
architectures provided that such architectures are sufficiently well-structured and flexible to accommodate
and integrate ASP components (as done, e.g. in Costantini, 2011; Costantini et al., 2015).

6 Integrating different computational logic approaches in agents: discussion

In our view, an ‘ideal’ agent architecture should be able to exploit the potential of integrating several
modules/components representing different behaviors/forms of reasoning, with these modules possibly
based upon different formalisms. The ‘overall agent’ should emerge from dynamic, non-deterministic
combination of these behaviors that should occur also in consequence of the evolution of the agent’s
environment. The developers of large and open systems in fact usually handle the complexity and het-
erogeneity of these systems by applying component-based approaches, where each part/component of the
system could be designed and implemented using a specific suitable formalism. Thus, a premise for the
integration of different agent programming approaches within an overall framework, requires such fra-
mework to be ‘modular,’ that is, able to accommodate (possibly heterogeneous) modules that are com-
bined through suitable interfaces. In this way, parts of a program can be developed and verified
independently and then can be more easily reused. In addition, the system should be maintained in a
modular fashion; system’s errors and deficiencies should be traced to specific system modules, thus
limiting the scope of detailed error searching. A modular programming framework should ideally satisfy
the following properties:

∙ allow abstraction, parametrization, and information hiding;
∙ ease program development and maintenance of large programs;
∙ facilitate re-usability;
∙ have a non-trivial notion of program equivalence to justify replacement of program components;
∙ preserve the declarativity of logic-based languages, if employed.
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In the following subsections we discuss modularity in logic programming, agent-oriented logic pro-
gramming and ASP, in view of the potential integration of such approaches for building agents.

6.1 Modularity in logic programming

The need for modular extensions to logic programming has been always widely agreed upon. In the
modern approaches to software development, complex systems are usually built by composing different
modules, also in view of code reusability and extensibility. An important point here which is a key factor in
the effectiveness of the composed program is the possibility of reasoning on the composition process. The
quest for a structured Logic Programming has motivated a large number of research, which evolved in the
area of modular logic programming, for example, Miller (1986), O’Keefe (1985), Mancarella and Ped-
reschi (1988), Gaifman and Shapiro (1989), Giordano and Martelli (1994), Bugliesi et al. (1994). The
reader may refer to Bugliesi et al. (1994) for a comprehensive survey.

The research conducted in the last decades on logic programming with modules can be divided into two
directions (according to Bugliesi et al., 1994). The first one is programming-in-the-large where modules
are combined by means of compositional operators for building programs as combinations of separate and
independent components. The second direction is programming-in-the-small in which logic programming
is enriched with new logical connectives.

In the programming-in-the-large approaches, for example, O’Keefe (1985), Mancarella and Pedreschi
(1988), Gaifman and Shapiro (1989), the adopted method is to provide algebraic operators for programs
composition such as union, deletion, overriding union, and closure, avoiding the need of an extension of
the underlying language of Horn clauses. This provides high flexibility, due to the possibility of obtaining
new composition mechanisms by introducing a corresponding operator in the algebra or by combining
existing ones. This approach by its nature supports code reusability. Different components of programs
can be combined, equivalent components can be replaced using a suitable equivalence relation. Finally,
one can obtain encapsulation and information hiding by introducing suitable interfaces between compo-
nents (cf., e.g. Mancarella & Pedreschi, 1988; Gaifman & Shapiro, 1989; Brogi et al., 1994). The other
direction is programming-in-the-small, which uses logical connectives of an extended form of Horn clause
language to model the composition of modules (cf, e.g. Miller, 1986; Giordano & Martelli, 1994).

The aim of many researches has been to find a general model-theoretic approach that combines pro-
gramming in-the-large and in-the-small in a satisfactory way. Many approaches resort to a well-known
concept in formal logic, which appears to be a valuable tool for modular logic programming: ‘generalized
quantifiers’. Generalized quantifiers (Mostowski, 1957; Lindström, 1966) have been conceived as devices
for expressing higher order properties which are not first-order definable. Enriching a first order language
by such quantifiers allows to increase its expressive capabilities. The extension of first-order logic by
generalized quantifiers was studied in depth in the seminal work by Lindström (1966). A logic program
can be seen as a generalized quantifier; for modularly nested logic programs, a logic programs P1 can refer
to a module P2 by using P2 as a generalized quantifier. A clean and simple semantics for modular logic
programs can be obtained by using this approach, which enjoys the following advantages: it extends the
classical semantics of logic programming in a conservative way, complies with various extensions of basic
Horn-clause semantics, and facilitates the use of modules employing different semantics; it allows the use
of the same module in a program multiple times (re-usability); also, it is highly expressive and it supports
information hiding.

Eiter et al. (1997) presents a general model-theoretic approach to modular logic programming which
combines programming in-the-large and in-the-small in a satisfactory way. The authors use generalized
quantifiers instead of inventing completely new constructs, showing how generalized quantifiers can be
incorporated into logic programs. They observe observed that, since a logic program can be seen as a
generalized quantifier, a semantics for modular logic programs follows immediately.

MAD is aModular ActionDescription language introduced in Lifschitz and Ren( 2006); it is a descendant
of the C+ action language described in Giunchiglia et al. (2004).MAD extends C+ by adding the capability
of splitting action descriptions into modules. In MAD, an action description consists of several modules;
each module describes a set of interrelated fluents and actions. ‘Import statements’ allow the user to provide
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references to other modules and thus characterize new fluents and actions by relating them to others,
introduced earlier. This capability is a key for designing a repository of background knowledge involving
actions, because descriptions of specific action domains will need to ‘import’ parts of the repository.

6.2 Modular agent-oriented programming languages

There is still big gap between industrial agent programming languages and those developed in academia.
To fill this gap or at least to provide a bridge between research-level and industrial-level approaches, agent-
oriented languages should provide transparent interfaces for easy integration with external code and legacy
software. In addition, the underlying architecture of such programming languages has to be flexible
enough to support various approaches to knowledge representation and agent reasoning models.

3APL (Hindriks et al., 1999; Dastani et al., 2005) is the most advanced rule-based language w.r.t. agent
programs modularity. Later works by Dastani (cf. Dastani et al., 2004; van Riemsdijk et al., 2006) introduce
a semantically oriented modularity to 3APL. In Dastani et al. (2004) the authors emphasized the need for
defining what it means that the agent ‘takes up’ a role and ‘enacts’ it, because agents in open systems like, for
example, e-commerce applications usually take up roles temporarily. So, they introduced a notion of role,
grouping together beliefs, goals, plans, and reasoning rules of a BDI agent. This role-based approach in the
context of AOP facilitates reusability. In van Riemsdijk et al. (2006), the authors introduce a concept of goal-
oriented modularity for 3APL. It is based on decomposing a set of practical reasoning rules of 3APL agent
into modules, according to goals they are supposed to achieve. A rule can call a module to achieve a subgoal
in the context of a plan. When the subgoal is achieved, control returns back to the context from which the
module was called. This is similar to the stack of routine calls in procedural languages. Implementation of
these 3APL extensions required modification to 3APL semantics and to the language interpreter. Both role-
and goal- oriented approaches tomodularize an agent program are based on particularities of the internal BDI
architecture of the agent (the ‘mental state’). 3APL was thus modified and extended into 2APL (Dastani,
2008), which adds new programming constructs that allow the programmer to control and determine the
activation and use of modules. These constructs and other modifications further support modularity in 2APL.

AgentSpeak(L)/Jason (cf. Rao, 1996; d’Inverno and Luck, 1998) and GOAL (Hindriks et al., 2000) do
not facilitate modularity in the sense of decomposition of an agent program to conceptually encapsulated
components. It is worth mentioning that GOAL was later extended with the notion of modularity by
Hindriks (2008).

MINERVA (cf. Leite et al., 2001; Leite, 2003) and DALI (cf. Costantini & Tocchio, 2002; Costantini
& Tocchio, 2004) do not support source code modularity. These two languages exploit the strengths of
declarative logic programming and the semantics of both of them is closely connected to logic program
updates. The IMPACT (cf. Dix et al., 2000; Rogers et al., 2000) programming framework introduces a
vertical modularity to agent programming, where the programmer encodes how an agent system should
move from one mental state to another by means of ‘updates’, which are independent of the internal
structure of the agent’s mental states. The programmer is free to choose any knowledge representation
technique for developing the agent’s mental state.

Novák and Dix (2008) presents a method for extending the syntax of an existing specialized AOP
languages to meet the requirements of modern programming. A ‘core’ language is extended by means of
higher-level syntactic constructs, thus improving the support for source code modularity and readability.
Their approach follows the tiered approach to programming language design (cf. Meyer, 1990). The
authors introduce what they call a ‘mental state transformer’ (mst) based on a functional view of an agent
program. Then, they construct ‘named mental state transformers’ on top of previously-introduced plain
mst. Named mst provide a powerful means for agent-program decomposition and modularization. The
tiered structure helps to maintain the simplicity and clarity of the programming language semantics in
addition to facilitating easier extension of the language. mst constructs can be used to break the agent
program into several functionally encapsulated subunits (the higher level ones can ‘call’ the lower level
ones, which facilitates the agent program structuring into several conceptually separated layers). This
method is particularly tailored to programming languages oriented to agents with mental states.
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6.3 Modular architectures

A modular, flexible and practical agent architecture is one that does not impose specific techniques on
design and implementation of an application, but rather allows the programmer to freely choose among the
techniques at hand. Several frameworks were proposed driven by the need for such architecture. Here we
try to give an insight into some of them.

Fisher (1998) considers an abstract representation of agent architectures which is very general. The
author describes the basic organization of an agent architecture by using group structuring, in which the
components of an agent can be considered as sub-agents, and the internal organization can be character-
ized via appropriate patterns of interaction and structuring between these sub-agents. Particularly, the
author shows how the layered architectures consisting of various modeling layers (reactive, deliberative,
etc.) might be represented by grouping these sub-agents together. Grouping provides a natural modeling
technique which is clear and easy to understand, thus supporting both the system designer and the user.

In Kakas et al. (2004) and Bracciali et al. (2005), the KGP agent model is presented as a declarative
model based on computational logic (particularly, abductive logic programming and logic programming
with priorities). The KGP model adopts a hierarchical architecture with a highly modular structure that
encompasses various reasoning and sensing capabilities which allow an agent to be designed for acting in
an open and dynamic environment. The modular separation of concerns leads to flexibility in developing
the various components of an agent independently of each other. The control of agents’ operational
behavior is provided through a context-sensitive cycle-theory component, which breaks the conventional
‘one-size-fits-all’ control of operation. This facilitates the design of heterogeneous agents. The ‘core’
of the KGP model is the knowledge base of the agent, which is accessed by a modular collection of
capabilities that enable the agent to plan or react, decide new goals, reason temporally and sense the
environment in order to check whether goals or (for cautious agents) the preconditions of actions in plans
are satisfied.

DALI (cf. Costantini & Tocchio, 2002; Costantini & Tocchio, 2004) is an AOP language and frame-
work which, though not supporting code modularity, is modular by nature. In fact, a DALI agent ‘emerges’
as the synthesis of a collection of capabilities interconnected among them, that can even be exchanged
among agents in a MAS (cf. Costantini & Tocchio, 2005, 2008). Also, DALI allows for sub-agents
generation and DALI agents may employ ASP modules. Specifically, Costantini (2011) proposed a fra-
mework for integrating ASP modules into virtually any agent architecture so as to allow for complex
reactivity, hypothetical reasoning based upon possibility and necessity, planning, etc. From the imple-
mentation point of view, the integration of such modules into logic-based architectures is straightforward.
In fact, this approach has been implemented within the DALI interpreter. Costantini et al. (2015) exploits
the extended DALI framework to implement affordable and flexible planning capabilities, with the pos-
sibility to select plans according to a suite of possible preferences. The effectiveness of this solution was
shown by means of a case-study where DALI agents (organized in aMAS) cooperate in order to explore an
unknown territory. The DALI programming environment at current stage of development (De Gasperis
et al., 2014) offers a multi-platform folder environment, built upon the DALI interpreter, shells scripts,
Python scripts to integrate external applications, a JSON/HTML5/jQuery Web interface integrated with
DALI applications, with a Python/Twisted/Flask Web server capable to interact with a DALI MAS at the
back-end. Thus, DALI is fully compatible with legacy/industrial applications. In addition, a cloud DALI
implementation, reported in Costantini, De Gasperis and Nazzicone (2017), Costantini, De Gasperis,
Pitoni and Salutari (2017), has recently been developed in view of distributed modular applications,
for instance in the Cognitive Robotics and eHealth fields (cf. Aielli et al., 2016, for a recently proposed
DALI-related project in this field).

Novák and Dix (2008) and Novák (2008) propose a ‘modular BDI agent programming architecture,’
which is component-based, and independent of the internal structure and underlying formalism of its
components. Components of such a BDI system are connected by ‘interaction rules.’ Thus, a clear dis-
tinction is made between knowledge representation in the system’s components, and overall system’s
dynamics. The architecture is equipped with transparent interfaces to existing ‘mainstream’ programming
languages so as to make integration with external code and legacy software easily feasible. In related work,
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Novák (2008) introduces the theoretical foundations of an agent programming framework called ‘Beha-
vioral State Machines’ (BSM). The proposed framework draws a strict and clear distinction between the
knowledge representation layer and the behavioral layer of an agent program. It supports a high level of
modularity w.r.t. employed KR technologies, thus facilitating the implementation of hybrid agents (i.e.
agents mixing both reactive as well as sequential behavior), and provides a clear and concise semantics
based on the well-studied computational model of Gurevich’s Abstract State Machines (Börger and Stärk
(2003)). The Knowledge Representation layer is kept abstract and open, thus giving the possibility of
integrating different KR modules (possibly realized in different KR technologies) into the agent’s
knowledge base. The main focus of the BSM computational model is in fact the agent’s behaviors.
Basically, in this framework a KRmodule has to provide a language of query and update formulas and two
sets of interfaces: entailment operators for querying the knowledge base and update operators to modify it.
To demonstrate the flexibility of the architecture, the aforementioned paper introduces a practical example
involving three different KR technologies, namely ASP, Prolog and Java. It formally states the compat-
ibility of the three modules. BSM do not natively feature any of the usual characteristics of rational agents
Wooldridge (2000), such as goals, beliefs, intentions, commitments and alike. The BSM programming
framework only guides a programmer to the design of a practical agent system while leaving a high degree
of freedom. In order to practically test the BSM approach to programming agent systems, the program-
ming language ‘Jazzyk’ has been designed and implemented (see Novák, 2009).

6.4 Modularity in answer set programming

Research on modularity in ASP is still at early stages. There are several approaches to modularization of
ASP programs, but in fact only few of them provide a flexible, easy-to-use modular architecture with a
clearly defined interface for module interaction. Below we try to give an insight into some of them.

Eiter et al. (1997) approaches modularity in ASP in the programming-in-the-small sense. In this
approach, program modules are viewed as generalized quantifiers (Lindström, 1966). The programming-
in-the-small approach of Ianni et al. (2004) addresses modularity in ASP based on templates for defining
subprograms. Tari et al. (2005) developed a declarative language for modular ASP; their language allows
to declaratively state how one ASP module can import processed answer sets from another ASP module
(by means of introducing ‘import rules’) where no cycles are admitted among modules.

Programming-in-the-large approaches to modularity in ASP are mostly based on Lifschitz and Turner’s
‘splitting set theorem’ (cf. Lifschitz & Turner, 1994) or on variants of it. The basic idea is that a program
can in general be divided into two parts: a ‘bottom’ part and a ‘top’ part, such that the former does not refer
to predicates defined in the latter. Computation of the answer sets of a program can be simplified when the
program is split into such parts. Faber et al. (2007) applies the magic set method in the evaluation of
Datalog programs with negation, that is, normal logic programs without function symbols. The notion of
modules and independent sets are introduced to guarantee ‘query equivalence’ for consistent programs.
The modularity results provide a better understanding of Datalog’s structural properties. The authors show
by experiments that their techniques allow to solve very advanced data-integration tasks.

Janhunen et al. (2009) considers the stable-model semantics of disjunctive logic programs (DLPs), and
define the notion of a DLP-function where a well-defined input/output interface is provided, and a suitable
compositional semantics for modules is introduced. Oikarinen (2008) establishes a simple and intuitive
notion of a logic program module that interacts through an input/output interface. This is achieved by
accommodating modules as proposed by Gaifman and Shapiro (1989) to the context of ASP. Full com-
patibility of the module system with the stable model semantics is achieved by allowing positive recursion
to occur inside modules only.

Dao-Tran et al. (2009) focuses on modular non-monotonic logic programs (MLP) under the answer set
semantics, whose modules may have contextually dependent input provided by other modules. Moreover,
(mutually) recursive module calls are allowed. The authors define a model-theoretic semantics for this
extended setting, showing that many desired properties of ordinary logic programming generalize to
their modular ASP. They characterize the computational complexity of modular ASP programs. Then,
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they investigate the relationship of modular programs to DLPs with well-defined input/output interface
(DLP-functions), and show that they can be embedded into MLPs.

Balduccini (2007b) provides modules specification with information hiding, where modules exchange
information with a global state. Baral et al. (2006) defines modules in terms of macros that can be called
from a program. This with the aim to facilitate the creation and use of a repository of modules that can be
used by knowledge engineers without having to re-implement basic knowledge representation concepts
from scratch.

In Faber and Woltran (2009) a technique is proposed that allows an answer set program to access the
brave or cautious consequences of another answer set program. Lierler and Truszczyński (2013) propose
‘modular logic programs’ as a modular version of ASP. This work consider programs as modules and
define modular programs as sets of modules. The authors introduce ‘input answer sets,’ the key semantic
object for facilitating the communication between modules.

7 Modular distributed architectures

In many application fields, agents and MAS are situated in complex, open, and dynamic computational
environments which include heterogeneous software components, physical devices and sensors including
wearable devices, third part services, data centers, expert systems and other knowledge sources available
on the ‘Internet of Everything.’ The availability of such components may evolve in time, as new knowl-
edge can be discovered, and components may join or leave the environment, or become momentarily
unreachable. Such environments can actually constitute CPS (see Khaitan & McCalley, 2015, for a
survey), and they may include physical components that interact with or are integrated into the compu-
tational ‘ecosystem.’ Architectures suitable for modeling such scenarios have been recently proposed, and
prototype implementations are or will be soon available.

7.1 Multi-context systems

Multi-context systems (MCS), introduced by Brewka et al. (2011a, 2011b, 2014), model the information
flow among multiple possibly heterogeneous data sources. The device for doing so is constituted by
‘bridge rules,’ which are similar to Prolog or, more precisely, Datalog rules, but allow for knowledge
acquisition from external sources; in fact, in each element of their ‘body’ the ‘context,’ that is, the source,
from which information is to be obtained is explicitly indicated. In ManagedMCS (mMCS) the conclusion
of a bridge rule is not simply added to the ‘destination’ context’s knowledge base; rather, it is subjected to
an elaboration via specific operators; the new knowledge can thus be processed (for instance with the aim
of making it compatible in terms of format and terminology) and can lead to any (even non-monotonic) re-
elaboration of the knowledge base. In order to account for heterogeneity of sources each context is
supposed to be based on its own logic. Semantics of mMCS is in terms of equilibria, where an equilibrium
is a global data state composed of partial data states, one for each context, encompassing however inter-
context communication determined by bridge rules, and where each element is ‘acceptable’ w.r.t. the
corresponding context’s semantics. An equilibrium is thus ‘stable’ w.r.t. bridge-rules. In view of practical
applications it can be noticed that, being logic-based, any context in an mMCS can be a logical agent, to
which MCSs have in fact already been explicitly extended (cf. Gonçalves et al., 2014; Costantini. 2015b;
Costantini & De Gasperis, 2015).

7.2 Agent computational environments

Costantini (2015a) proposes the general software engineering approach of transforming an agent into an
agent computational environment (ACE) composed of: (1) the ‘main’ agent program, or ‘basic agent’; (2)
a number of reasoning modules available to the main agent program; (3) a number of data sources (
‘contexts’) that the agent is able to access; some contexts will be internal, or local; some will be external,
where the set of accessible contexts may vary over time. There is no assumption about how the various
components are defined, except that they are based upon Computational Logic. As an interesting
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development, an ACE component can in turn be an ACE, thus leading to K-ACE, which is a multi-level
modular architecture suitable for highly distributed applications.

Costantini (2015a) proposes a full formalization with a semantics, which draws inspiration fromMCSs’
equilibrium semantics, and discusses an application to Complex Event Processing. Costantini and For-
misano (2016) enhances the approach by introducing the evolution of the system in time under compo-
nents’ update, and by making bridge-rules application tailored to agents on the line of Costantini (2015b),
Costantini and De Gasperis (2015): in fact, bridge rules are proactively triggered upon specific conditions
and the obtained knowledge is reactively elaborated via a management function which generalizes the
analogous MCS’s concept. Also, bridge rules are generalized to ‘bridge-rule patterns’ where the involved
contexts are left unspecified: such patterns can be thus dynamically specialized and the resulting bridge
rules can be activated so as to put them into action. Capabilities of Enhanced ACE are demonstrated on a
case study concerning quantitative reasoning in agents; a situation is outlined where data might be
potentially accessible to an agent so as to build a plan to reach some objective; however, in the case study
the agent is constrained by the available budget since access to knowledge bases is subject to fees where
one or more stages of the devised plan also imply to pay. The involved quantitative reasoning module is
defined in RASP (resource-based answer set programming) (cf. Costantini & Formisano, 2010; Costantini
et al., 2010; Formisano & Petturiti, 2010) plus suitable preference mechanisms (Costantini & Formisano,
2011), where RASP is an extension of ASP which handles resources and preferences on resource usage.
RASP has been proven in Costantini and Formisano (2013) to be equivalent to an interesting fragment of
Linear Logic.

ACEs share with Modular BDI Architecture and BSM the possibility of accommodating heterogeneous
modules. However, ACE go towards distribution, and bridge rules do not define control but rather
knowledge interchange among modules. Nonetheless, BDI and BSM might be employed to define any of
an ACE’s composing modules.

8 Discussion and concluding remarks

A flexible and robust AOP framework should, in our view, neither enforce a specific knowledge repre-
sentation technique nor commit to one single scheme of behavior. Rather, it should facilitate the inte-
gration of heterogeneous knowledge representation techniques and different schemes of behavior in
building agents or MAS. The implementation of a software development platform based upon a modular
architecture should indeed include support for the development of components in various programming
and knowledge representation languages and formalisms, where the underlying infrastructure should serve
to ‘glue’ components together.

The modular BDI and BSM architectures (mentioned earlier) introduce a clear distinction between the
knowledge representation layer of an agent system and its dynamics (behavioral layer), with the former
composed of a set of heterogeneous KR modules, particularly of logic-based ones (where ASP modules
can also be exploited), connected by means of interaction rules. However, related rule-based languages
are constrained only to BDI-type agents and this does not facilitate compositional modularity w.r.t.
behavioral decomposition. Both AgentSpeak(L) and 3APL in fact enforce a particular software devel-
opment methodology together with a specific knowledge representation technique. In addition, there is a
tight coupling of interactions between the components of an agent system, such as the belief base and goal
base. This has a strong influence on the possibility of their integration with other systems.

METATEM and Golog (cf. Mascardi et al., 2004, for a review) in their basic form are not easily
extensible to handle several heterogeneous knowledge bases, because of a tight coupling of the KR
approach (usually Prolog, or an FOL-style language) with the language for encoding agent’s behaviors.
IMPACT provides insteaf a high degree of freedom w.r.t. heterogeneous KR technologies and their
integration. An IMPACT agent consists of a set of packages with a clearly defined interface composed of a
set of data types, data access functions and type composition operations. An agent program is, there, a set
of declarative rules involving invocations of the underlying components via predefined data access
functions.
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KGP knowledge bases describe the knowledge of the agent, also concerning its environment. A KGP
agent consists of separate modules supporting the different reasoning capabilities (capabilities modules).
These capabilities are based upon abductive logic programming but the architecture might in principle
accommodate modules defined in different ways. This modularity in the architecture facilitates in fact the
integration of heterogeneous modules in one agent program. ASP modules might in principle be exploited
in this architecture to implement various capabilities, for instance planning.

Lots of research and experiments have been done on integrating ASP modules in different agent
systems. Various kinds of ASP modules have been integrated into DALI agents, and experimented in
significant applications. In the architecture proposed in Sridharan (2016), the coarse-resolution symbolic
domain representation is translated into an ASP program, which is solved to provide a tentative plan of
abstract actions, and to explain unexpected outcomes. BSM have demonstrated by practical examples the
potential of the integration of several knowledge representation techniques among which ASP. As a matter
of fact, after reviewing a good corpus of papers about agents, and about the use of ASP in agents andMAS,
we are able to remark that ASP is usefully exploited mainly in the form of modules for handling knowl-
edge representation and implementing reasoning capabilities in tasks where ASP proved to be very
effective. Few approaches suggest a complete ASP-based agent architecture like done, for example, in
Gelfond (2004), Balduccini et al. (2014) (see also Gelfond & Kahl, 2014, and the many references
therein).

We believe that modularization is the key for flexibility, and naturally for efficiency and scalability.
Modularizing an agent and/or transforming it into an ACE is in our opinion the best way to design a robust
agent through the integration of heterogeneous modules representing different behaviors or forms of
reasoning in one agent system. A flexible agent system or, more generally, an MCS or an ACE, should be
able to integrate modules represented by using imperative approaches; this can in fact be practically useful
for some functions, for example, for interacting with the environment, and for the user interfaces. Such an
agent system might also integrate non-symbolic reasoning modules as done in SOAR, a very well-known
‘cognitive architecture’ (presented in Laird et al., 1987; Laird, 2008, 2012); a list of references can be
found at the SOAR Website, URL http://soar.eecs.umich.edu/) which integrates connectionistic and
software components. Declarative approaches will be profitably exploited in domains such as knowledge
representation and for ‘executable specification’ of different behaviors/forms-of-reasoning where
declarative programming and ASP have since long proved to bring many advantages, among which clear
and robust semantics, high-level concepts like beliefs or goals, flexibility, ease of maintenance, and
verifiability2. This modular way of representing agents could exploit, where deemed convenient, the
advantages of existing well-established imperative approaches like JACK and JADEX, which have object-
oriented syntax and large range of available libraries, and the flexibility and generality of architectures
such a SOAR for representing, for example, long-term and short-term memory (in Gero & Peng (2009) the
reader can find a nice summary with many references of cognitive studies on memory and their applica-
tions to agents).

So, the resulting agent systems will be able to explain at best the advantages of all approaches so as to
avoid the ‘brittleness’ that may allegedly result, according to SOAR-Research-Group (2010), from over-
commitment to logic-based approaches. The use of agent technologies in industry is growing since the
1990s. The rate of this growth can be further increased by concentrating more on the issues of standards
and on adoption of software development tools and methodologies to facilitate and empower the use of
integrated multi-paradigm solutions, and the development of highly distributed heterogeneous systems.
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